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Abstract
The 168 year trends of summer (July–September) sea ice area (SIA) variations in six Arctic regions
during 1850–2017 are analyzed. SIA has been significantly decreasing in most Arctic regions since
1850. The rate of retreat for the period of 1948–2017 accelerated multi-fold. For the nearly
four decades since 1979, most Arctic regions are experiencing the highest reduction rate. Besides
the increasing surface air temperature, the key drivers to the accelerated summer Arctic sea ice
decline are found to be the combined global warming and the regional Arctic warming exerted
simultaneously by the Arctic Oscillation, North Atlantic Oscillation, Atlantic Multidecadal
Oscillation and Pacific Decadal Oscillation during the last several decades. The dynamical and
thermodynamical warming, driven by the internal variability of the teleconnection patterns,
occurred in the last several decades, in particular on the multidecadal timescales. This leads to
Arctic amplification that accelerates the positive ice/ocean albedo feedback loop, resulting in
accelerating summer sea ice decline.

1. Introduction

Arctic sea ice plays an important role in the climate
system. It is sensitive to climate change and strongly
affects the atmospheric energy budget, ocean circu-
lation, and air–sea interactions (Walsh 1983, Mysak
et al 1990, Deser et al 2000). The persistent decline in
annual sea ice cover, which can lead to unpreceden-
ted changes in the global climate, has been well docu-
mented since the 1980s (Stroeve et al 2012, Schweiger
et al 2019).

Various studies have shown that the warm-
ing air temperature (Stroeve et al 2007, Polyakov
et al 2012) resulting from the increased downward
infrared radiation (Ikeda et al 2003, Kapsch et al
2016) and positive ice/ocean albedo feedback (Wang
et al 2005, Screen and Simmonds 2010, Lei et al
2016), anomalous ocean currents (Kinnard et al
2011), anomalous wind forcing (Ogi et al 2010),
northward transport of atmospheric moisture and

sensible heat (Park et al 2015, Hegyi and Taylor
2018), and some dominant patterns of atmospheric
circulation variability such as Arctic dipole anom-
aly (DA) (Wang and Ikeda 2000, Overland and
Wang 2005, 2015, Wang et al 2009) are recog-
nized as the possible key drivers of rapid Arctic sea
ice loss.

This study examines the longest (168 year) sum-
mer sea ice area (SIA) time series regarding trend and
variability. Compared with other studies (Alekseev
et al 2016, Connolly et al 2017), the detailed geo-
graphical features in six Arctic regions are more
emphasized (figure 1). Based on the evaluation of
trends for different periods (1850–2017, 1948–2017
and 1979–2017), the impacts of global warming and
dominant internal climate variability on the acceler-
ated sea ice decline in the recent decades are further
investigated, whichwas due to the accelerated positive
ice/ocean albedo feedback at work (Wang et al 2005,
2014).

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. The Arctic ocean is divided into six regions used
in this study (record breaking summer sea ice concentration
in 2012 is shaded; units: %). Region 1: Beaufort and
Chukchi Seas, also including the Canadian Archipelago; 2:
Laptev and East Siberian Seas; 3: Central Arctic; 4: Barents
and Kara Seas; 5: Greenland Sea; and 6: Baffin Bay.

2. Data andmethods

The SIA data is the sum of the grid cell areas mul-
tiplied by the ice concentration (Peng et al 2013,
Meier et al 2017, Walsh et al 2017) from the National
Snow and Ice Data Center (NSIDC). The dataset
consists of two types of measurements: traditional
ship-based and airborne before 1979 and satellite-
based since 1979. The data from 1900–1978 were
merged to a gridded dataset (Chapman and Walsh
1993), which has beenused by previous studies (Wang
and Ikeda 2000, 2001, and many others). Using the
same approach, Walsh et al (2017) further synthes-
ized Arctic sea ice data from a variety of historical
sources into the database, extending it back to 1850
with monthly time-resolution. The synthesis proced-
ure includes interpolation to a uniform grid and
an analog-based estimation of ice concentrations in
areas of no data. Large uncertainty may exist in the
data prior to 1979 and, in terms of mean, its sys-
tematic error should differ from that of the satellite
era. However, in this study we investigate the variab-
ility rather than the mean, similar to Wang and Ikeda
(2001) and Wang et al (2005), who used the data-
set for analysis of sea ice variability and trend during
the period 1900–1995. Brennan et al (2020) pointed
out that the lower interannual variability during the
instrumental era ismainly due to a lack of high quality
sea ice observations in the early 20th-century warm-
ing (ETCW; 1918–1948) in this dataset. Therefore,
we evaluated and compared the trends of 1850–2017,
1948–2017 and 1979–2017, respectively.

Figure 2. The time series of summer SIA anomalies in each
Arctic region for the periods of 1850–2017 (units: 106 km2).
(a) Beaufort and Chukchi Seas. (b) Laptev and East
Siberian Seas. (c) Central Arctic. (d) Barents and Kara Seas.
(e) Greenland Sea. (f) Baffin Bay. (g) Whole Arctic. The
orange lines are 39 year trends, the green lines are 70 year
trends, the purple lines are 168 year long-term trend and
the black lines are 9 year running mean.

We mainly focus on the analysis in summer
because that is the time period in which SIA reaches
the minimum value (July–September) and high
standard deviations usually occur (Wang and Ikeda
2001), indicating that summer ice cover can cap-
ture major interannual and decadal variability. The
time series of summer SIA anomalies are calculated
by removing the summer climatology (figure 2). The
summer Arctic surface air temperature (SAT) time
series (1850–2017; Morice et al 2012) is the stand-
ardized July–September averaged SAT anomalies over
70◦–90◦ N by using HadCRUT4 from the Climatic
Research Unit (University of East Anglia) and Had-
ley Centre (UK Met Office). For composite ana-
lysis (figure 4), the SAT is from the NOAA-CIRES
Twentieth Century Reanalysis version 3 (1836–2015;
20CRv3; Slivinski et al 2019).

By applying empirical orthogonal functions
(EOFs) to the normalized Arctic (70◦–90◦ N) sea
level pressure (SLP; 1948–2017) from the National
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Table 1. The linear decadal rates of summer SIA (unit: 106 km2 decade−1; at the 99% significance level) and trend percentages (shown
in parentheses; unit: per decade; relative to the 1979–2017 average) in each region over the periods of 1850–2017, 1948–2017, and
1979–2017.

Unit: 106 km2 decade−1 168 year trend (1850–2017) 70 year trend (1948–2017) 39 year trend (1979–2017)

1. Beaufort and Chukchi
Seas (B&C)

−0.045 (−1.51%) −0.15 (−5.02%) −0.34 (−11.37%)

2. Laptev and East
Siberian Seas (L&E.S)

−0.054 (−2.83%) −0.10 (−5.24%) −0.33 (−17.28%)

3. Central Arctic (C.Ar) 0.010 (0.14%) −0.015 (−0.21%) −0.12 (−1.70%)
4. Barents and Kara Seas
(B&K)

−0.025 (−4.72%) −0.065 (−12.26%) −0.20 (−37.74%)

5. Greenland Sea (Gre.) −0.0033 (−1.43%) −0.026 (−11.30%) −0.011 (−4.78%)
6. Baffin Bay (Baf.) −0.011 (−5.50%) −0.052 (−26.00%) −0.065 (−32.50%)
7. Whole Arctic −0.17 (−0.96%) −0.46 (−2.60%) −1.10 (−6.22%)
All the rates are statistically significant at the 99% level and the trend percentages in parentheses are shown in bold for highlight.

Table 2. The correlation coefficient between summer SIA (left: SIA with long-term trend; right: SIA without long-term trend) and
summer Arctic air temperature, summer AO, summer DA, winter NAO, AMO and summer PDO in each region (The 95% significance
levels in bold are determined by Monte Carlo simulation.).

Arctic SAT
(1850–2017)

AO
(1948–2017) DA (1948–2017)

NAO
(1865–2017)

AMO
(1856–2017)

PDO
(1854–2017)

B&C −0.57 −0.30 0.05 0.10 −0.27 −0.28 −0.14 −0.12 −0.29 −0.37 0.15 0.15
L&E.S −0.60 −0.35 −0.01 0.05 −0.36 −0.37 −0.13 −0.10 −0.26 −0.32 0.15 0.16
C.Ar −0.06 −0.17 0.03 0.01 −0.10 −0.11 0.09 0.07 −0.20 −0.20 0.17 0.19
B&K −0.61 −0.39 −0.12 −0.08 −0.16 −0.16 −0.07 −0.04 −0.34 −0.39 0.09 0.08
Gre. −0.38 −0.27 −0.26 −0.25 0.12 0.13 −0.05 −0.03 −0.14 −0.15 −0.01 −0.02
Baf. −0.39 −0.22 −0.27 −0.25 −0.11 −0.11 −0.15 −0.14 −0.14 −0.15 −0.01 −0.03
Arctic −0.62 −0.39 −0.01 0.04 −0.27 −0.28 −0.07 −0.03 −0.31 −0.37 0.18 0.19

Centers for Environmental Prediction National Cen-
ter for Atmospheric Research (NCEP/NCAR) reana-
lysis I dataset (Kalnay et al 1996), the leading mode
is Arctic Oscillation (AO) and the second mode is
named Arctic DA pattern (Overland and Wang 2005,
Wu et al 2006, Wang et al 2009). The station-based
North Atlantic Oscillation (NAO) index (1865–2017;
Hurrell 1995) is the difference of normalized SLP
between Lisbon, Portugal and Stykkisholmur/Reyk-
javik, Iceland and obtained from the NCAR’s Cli-
mate Analysis section. The Atlantic Multidecadal
Oscillation (AMO) index (1856–2017; Enfield et al
2001) is computed as the area weighted average sea
surface temperature (SST) over the North Atlantic
and further detrended from the NOAA Earth System
Research Laboratory. The Pacific Decadal Oscillation
(PDO) index (1854–2017; Mantua et al 1997) as the
leading (EOF) mode of North Pacific (20◦–70◦ N)
SST monthly averaged anomalies are from NOAA’s
National Centers for Environmental Information.
Since summer AO, summer DA, winter (January–
March) NAO, and summer PDO show better correl-
ations with the summer SIA variation compared to
other seasons, only these seasonal indices are shown
in this study. Though there are quantitative differ-
ences among different seasons, the main results are
in good agreement regardless of seasons.

Trends for the yearly SIA are calculated using lin-
ear least squares regression and the Student’s t-test is
used for the significance (table 1). The Monte Carlo

simulation (Wang and Ikeda 2000) is used for the cor-
relation evaluation (table 2).

3. Regional summer Arctic sea ice
variations

The time series of summer SIA anomalies show
the pronounced interannual and decadal variations
(figure 2). However, there is less variability prior to
the satellite era (except for Baffin Bay; Alekseev et al
2016, Connolly et al 2017), a significant part of which
is due to a lack of high quality sea ice observations
in the ETCW (Brennan et al 2020). The Beaufort,
Chukchi, Laptev, East Siberian, Barents, Kara and
Greenland Seas and the whole Arctic experienced a
sharp shift from the positive phase to the negative
phase between the 1930s and 1940s (figures 2(a), (b),
(d), (e) and (g)), which is the same as the results of
the reconstructed dataset from Alekseev et al (2016)
and Connolly et al (2017). The Central Arctic exhib-
ited a transition from negative to positive phase in
1952–1953 (figure 2(c)). The generally increasing SIA
from mid 1940s until late 1970s only occurs in the
Greenland Sea (figure 2(e); Pirón and Pasalodos 2016,
Alekseev et al 2016, Connolly et al 2017). Except for
the Central Arctic, the summer SIA has been generally
decreasing since the late 1970s.

The summer SIA anomalies in most Arc-
tic regions (except for the Central Arctic)
have been, statistically, significantly decreasing
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since 1850 (figure 2 and table 1). The largest
decreasing linear trend of −5.50% decade−1

(−0.011 × 106 km2 decade−1) occurs in Baffin Bay.
The Greenland Sea shows the smallest negative trend
of−1.43%decade−1 (−0.0033× 106 km2 decade−1).
A reversed trend toward increasing SIA in the Central
Arctic over the 168 years is apparent. For the whole
Arctic, the overall rate of change is−0.96% decade−1

(−0.17× 106 km2 decade−1) during 1850–2017.
The declining trend has accelerated since 1948

and more than doubled compared to the long-term
trend (table 1) over the Beaufort and Chukchi Seas
(−5.02% decade−1 (−0.15 × 106 km2 decade−1),
(Laptev and East Siberian Seas (−5.24% decade−1

(−0.10× 106 km2 decade−1)), Barents and Kara Seas
(−12.26% decade−1 (−0.065 × 106 km2 decade−1))
and Baffin Bay (−26% decade−1 (−0.052 ×
106 km2 decade−1)). The Greenland Sea trend has
increased nearly sevenfold and exhibited the most
rapid decline (−11.30% decade−1). In the Central
Arctic, the 70 year (1948–2017) trend has trans-
lated into a statistically significant negative trend of
−0.21% decade−1 (−0.015 × 106 km2 decade−1).
The decline in the whole Arctic has increased
1.7 times at the rate of −2.60% decade−1

(−0.46× 106 km2 decade−1) since 1948.
Most Arctic regions (except for the Green-

land Sea) have experienced the highest reduction
of SIA over the last nearly 4 decades, since 1979.
During the 39 year period, the trends have more
than doubled over the Beaufort and Chukchi Seas
(−11.37% decade−1 (−0.34 × 106 km2 decade−1)),
Laptev and East Siberian Seas (−17.28% decade−1

(−0.33 × 106 km2 decade−1)) and Barents and
Kara Seas (−37.74% decade−1 (−0.20 ×
106 km2 decade−1)). The fastest decrease in SIA over
the Central Arctic (−1.70% decade−1) is seven times
faster than the trend for the 70 year (1948–2017)
period. For the whole Arctic, the decline has reached
−6.22% decade−1 (−1.10 × 106 km2 decade−1)—
more than double the 70 year trend.

The accelerated decline in SIA in recent decades
was due to both dynamical forcing (such as positive
Arctic DA whose associated anomalous meridional
wind effectively advects sea ice out of the Arctic via
enhancing the Transpolar Drift Stream (see figure 2 of
Wang et al 2009)) and thermodynamical effect, such
as temperature amplification (see figure 4.18 ofWang
2014). In particular, the Arctic amplification has been
attributed to a number of mechanisms, namely, sea
ice albedo feedback (Wang et al 2005, Screen and Sim-
monds 2010, 2014), temperature feedbacks (Pithan
and Mauritsen 2014), external global warming (Min
et al 2008), large-scale atmospheric circulation vari-
ability of the internal climate system (Ding et al 2017,
Mewes and Jacobi 2019), changes to the radiation bal-
ance (Graversen and Burtu 2016) and enhanced sur-
face fluxes (Boisvert et al 2015).

Warming

Cooling

Warming

Warming

Warming

Warming

Cooling

Cooling

Cooling

Cooling

Cooling

Warming

Figure 3. The standardized time series of climate indices.
(a) Summer Arctic air temperature. (b) Summer AO.
(c) Summer DA. (d) Winter NAO. (e) AMO. (f) Summer
PDO. The orange lines are 39 year trends, the green lines
are 70 year trends, the purple lines are long-term trends and
the black lines are 9 year running means. The ‘warming’
and ‘cooling’ presents the positive and negative SAT
anomalies over the most Arctic seas for different phase
based on figure 4.

4. Association between summer Arctic sea
ice and dominant climate variability

The Arctic SAT record (Morice et al 2012) in summer
shows a sustained cooling phase over the first 70 years
as the result of Kinnard et al (2011), followed by the
ETCW (1920s–1940s). Then, the Arctic went through
a slight cooling (1940s–1970s), followed by another
period of warming (1970s-present; figure 3(a)). With
the accelerated warming trend of 0.59 K decade−1

in recent decades, the air temperature has increased
by 2.24 K since 1979. Except for the Central Arc-
tic, the correlation with SIA is statistically significant
and the coefficient with the detrended SIA is reduced
more than 30% (table 2), indicating that change in
SAT is a critical mechanism, actively contributing to
the accelerated decline of SIA in the Arctic (Vinnikov
et al 1999).

AO and Arctic DA are the first two leading modes
of SLP anomalies in the Arctic (Overland and Wang
2005, Wu et al 2006, Wang et al 2009). In summer,
both indices display large interannual and decadal
fluctuations with weak increasing trend (figures 3(b)

4
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Figure 4. The differences of composited SAT anomalies (unit: K) between positive and negative events (one STD) during (left)
1800s–2015, (middle) 1948–2015 and (right) 1979–2015 for (a) AO (a) and (b), DA (c) and (d), NAO (e)–(g), AMO (h)–(j), and
PDO (k)–(m). The regions above 95% confidence level are stippled. Based on figure 3, all five teleconnections had simultaneous
warming for most Arctic regions in the recent decades, contributing to the Arctic temperature amplification, in addition to the
overall global/Arctic warming impact.
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and (c)). AO (DA) shows higher correlation with SIA
in the Atlantic (Pacific) Ocean (table 2). The correl-
ation between summer AO and SIA becomes smaller
in most regions after removing the long-term trend
of summer SIA. However, the correlation between
summer DA and the detrended summer SIA slightly
increases in theArctic regions. It indicates thatDAhas
a much stronger relationship with the natural vari-
ability of SIA (Wang et al 2009) than the AO (Rigor
2002). DA (AO) has had a positive (warming in most
Arctic regions) trend in the last two (four) decades
(figures 3(b) and (c)), however the time span is relat-
ively short compared with others.

NAO (Hurrel 1995) is one of the most promin-
ent teleconnection patterns in all seasons (Livezey and
Mo 1987, Gong and Luo 2017). The winter index
exhibits considerable interannual variability and the
increasing trend during 1948–2017 is more signi-
ficant than that during 1865–2017 and 1979–2017
(figure 3(d)). It is found that the winter NAO shows
relatively higher correlation with the summer SIA
variations, and greatly weakens when removing the
trend of SIA (table 2), which means NAO is well-
related to the recent greater retreating rate of SIA
in the Arctic. NAO underwent a positive (warming)
trend in the last four decades (figure 3(d)).

The SST-based AMO index (Enfield et al 2001)
provides a simple and concise way to describe Atlantic
multidecadal variability. This long-term detrended
record nearly covers two cycles, with increasing trend
in the recent decades (figure 3(e)). After removing the
linear trend from the summer SIA time series, the cor-
relations become larger (table 2), which means AMO
is better correlated to the natural variability of sum-
mer SIA. AMO has experienced the largest warming
in the last two decades (figure 3(e)).

The PDO (Mantua et al 1997), as a long-lived
pattern of Pacific SST variability, has a significant
influence on the climate of the Arctic (Screen and
Francis 2016). The summer index shows strong inter-
annual and decadal variations with no significant
long-term (1854–2017) trend (figure 3(f)). However,
with recent, more negative values in the 21st century,
there has been a downward trend since 1979. The cor-
relation between the PDO and the detrended summer
SIA has become larger in most regions (table 2), sug-
gesting that PDO correlates with the natural variabil-
ity of SIA. However, the small correlation coefficients
suggest that summer PDO plays a relatively small role
on the accelerated decreasing rate of SIA, compared
to the summer AMO. PDO showed a negative (warm-
ing) phase in the last two decades (figure 3(f)).

To further highlight how the five teleconnection
patterns impact Arctic SAT anomalies, composite
analyses with Student’s t-tests are used to confirm
the significantly impacted regions. Figure 4 shows
that during the positive phase of AO, DA, NAO, and
AMO, and negative of PDO, the Arctic SAT experi-
ences warming anomaly in most Arctic regions, and

vice versa. DA, AMO and PDO have more significant
(over 95%) impacts over the pan-Arctic, with AMO
being most significant. Positive AO causes a relat-
ivelyweakwarming among all Arctic seas (figures 4(a)
and (b)). It is noted that +DA, a local mode, causes
warming in the Pacific and Central Arctic, and cool-
ing in the Atlantic Arctic, and vice versa during−DA
(figures 4(c) and (d)). Similar to the AO, during the
positive NAO phase, the composite SAT shows warm-
ing anomalies among all Arctic seas (figures 4(e)–(g)).
The positive AMO exhibits the overall Arctic warm-
ing (figures 4(h)–(j)). Negative (positive) PDO causes
significant warming (cooling) along Baffin Bay. The
amplitude became larger in the recent decades (1979–
2015; figures 4(b), (d), (g), (j) and (m)), indicating
the stronger positive phase of AO, DA, NAO, AMO
and negative phase of PDO (see figure 3) simultan-
eously contributed to the Arctic amplification. How-
ever, we are cognizant that our results are based on
fully statistical methods and that the understanding
of the causal relationship requires dynamical model-
ing with coupled atmosphere–ocean–sea ice models,
which remains an important topic for future research.

5. Conclusion

Using the longest (1850–2017) gridded sea ice data
available, our study presents the long-term (168 year)
trend in six Arctic regions and further compares the
trends for the periods of 1948–2017 and 1979–2017,
indicating that the declining trend has accelerated
since 1948 and most Arctic regions (except for the
Greenland Sea) have experienced the highest reduc-
tion of SIA over the last nearly 4 decades. This ana-
lysis suggests that the accelerated decline of SIA in
recent decades was not uniquely driven by a single
factor, but by a combination of global warming and
internal variability of the climate system, particu-
larly on the multidecadal timescales, which contrib-
uted to Arctic temperature amplification and anom-
alous atmospheric and oceanic circulation patterns
over the pan-Arctic. The Arctic temperature ampli-
fication (Screen and Francis 2016) and oceanic and
atmospheric dynamical and thermodynamical pro-
cesses directly and indirectly accelerate the temperat-
ure feedbacks and the positive ice/ocean albedo feed-
back loop (Mysak et al 1990, Wang et al 2005, 2014),
leading to the accelerating decline of summer Arctic
sea ice.

Data availability statement

All data used in analysis available in public
repositories. The sea ice concentration data is
downloaded from http://nsidc.org/data/g10010,
http://nsidc.org/data/G02202 and http://nsidc.org/
data/G10016. The HadCRUT4 near surface temper-
ature data set is from www.metoffice.gov.uk/hadobs/
hadcrut4/data/current/download.html, 20CRv3 is
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from https://psl.noaa.gov/thredds/catalog/Datasets/
20thC_ReanV3/Monthlies/catalog.html, NCEP1
SLP is from www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.surface.html, NAO index is
from https://climatedataguide.ucar.edu/climate-
data/hurrell-north-atlantic-oscillation-nao-index-
station-based, AMO is from www.esrl.noaa.gov/
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